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Suppl. Fig. 1. Consistently with our model, experiments in humans and monkeys show that 

activity corresponding to ‘free phase’ is followed by equivalent of ‘clamped phase’. a, Average 

population activity across 298 inferior temporal cortex neurons in monkeys during passive viewing 

of novel (red line) and familiar stimuli (dashed blue line; adopted from Freedman et. al, 2006). 

Note that consistently with our model, for both types of stimuli the neuronal response is initially 

the same (denoted by gray area). However, later response to novel stimuli diverges from the 

familiar, likely due to top-down modulation from other brain regions. In the context of our work, 

response to familiar stimuli could be seen as expected activity equivalent to ‘free phase’, and 

response to novel stimuli could be interpreted as activity with additional top-down modulation 

analogous to ‘clamped phase’ in our model. Our learning rule suggests that the late response to 

novel stimuli which deviates from expected activity can provide training signal for synaptic 

update. b, Average event-related potential recorded with EEG electrode located above the frontal 

cortex in healthy human adults in response to 1000 Hz standard tones and to 1032 Hz deviant tones 

(20% probability; adopted from Sams et. al 1985). This is a typical example from a rich body of 

scientific literature on the mismatch negativity phenomenon (a brain response to violations of 

expected stimulus rule). The similarity of neuronal responses at early phase and divergence from 

expected response for unexpected stimuli only in the later phase provides another biological 

example as justification for combining free and clamped phase in our model.   
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Suppl. Fig. 2. Examples of handwritten digits from MNIST data set (LeCun et al. 1998). Note that 

classifying such images is a non-trivial task even for humans, as for instance digits at the bottom 

row (5, 6, 7, 8, 9) could be mistaken for: 0, 4, 4, 9 and 4, respectively.   

 

 

Suppl. Fig. 3. Additional biologically plausible network architectures. a, The learning curve for a 

network with 80% of excitatory and 20% inhibitory neurons in the hidden layer. For each 

excitatory neuron, all outgoing synaptic connections to output neurons were non-negative (w  0), 

and for inhibitory neurons all outgoing connections to output neurons were negative or zero (w<0). 

The network had the same architecture as our main network (784-1000-10 neurons), and was using 

the same learning rule (Eq. 3). On the test data set it achieved a comparable error rate of 2.66%. 

Those results are consistent with other models which showed that implementing Dale’s law did 

not reduce network performance substantially (i.e.: Cornford et al. 2020). b, Learning curves for a 

network with asymmetric connections. The network had the same architecture as our main network 

(784-1000-10 neurons), and on the same MNIST dataset it achieved an error rate of 1.96%. Typical 

artificial neural networks trained with the backpropagation algorithm, require that a synaptic 

weight from neuron i to j (wij) is exactly the same as a synaptic weight from neuron j to i (wij=wji 

is called symmetric weight). However, it was recently shown that networks without symmetric 

connections can still converge on a good solution (Lillicrap et al. 2016, Akrout et al. 2019). Similar 

results were also found by Detorakis et al. (2019) who used asymmetric weights with Contrastive 

Hebbian Learning. Thus, our results are consistent with that previous work and show that our 

learning rule also works in such more biologically plausible network configurations.   
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Suppl. Fig. 4. Implementation of predictive learning rule in a spiking neuronal network. a, Activity 

of a sample neuron. Red trace shows neuron internal activation which is a function of synaptic 

inputs. (Top) Spikes are generated based on the value of internal activation. Gray shaded area 

marks the extent of free phase which is used to predict steady-state activation. b, Actual vs. 

predicted steady-state free phase activity. Each dot represents the activity of one neuron during 

presentation of one stimuli. Activity of 1000 hidden neurons during presentation of 200 stimuli 

from the test dataset is shown. The correlation coefficient between actual and predicted activity 

was R=0.99 (p<0.00001). c, Learning curves on MNIST task for training and testing dataset. Error 

rate of 2.46% on the test set shows that the spiking neuronal network with our learning rule was 

able to solve the presented task.   

 

Spiking network model.  

The code for this network with all implementation details is provided at: 

https://github.com/ykubo82/bioCHL/tree/master/bioCHLspk . Briefly, our network was based on 

work by O’Connor et al. (2019) who developed spiking networks using the Equilibrium 

Propagation algorithm which is an expansion of Contrastive Hebbian Learning (Scellier et al., 

2017). The steady state is calculated using the Forward Euler method with each time step t:  Aj
t  =  

(1 - ) Aj
t-1  +  p’(Aj

t-1 ) (∑ 𝑤𝑖𝑗  𝑖 p(Ai
t-1) + bj)

 , where A is the activation state, p’(Aj) is the derivative 

of the activation function p, b is the bias, and i and j are neurons indices.  can be seen as the 

learning rate of the activations. These states are clipped to range [0, 1]. Each neuron communicates 

only using binary signals: 0 or 1, to model spiking activity. For generating spikes, an encoder 

converts the neuron activation state to 1 or 0, which is sent as an output signal (Suppl. Fig. 4a). 

The binary signals received by a neuron are converted into the activation state by a decoder. This 

could be seen as converting discrete spikes into a continuous post-synaptic membrane potential in 

actual neurons. We modified this spiking network by implementing our learning rule and by adding 

a least-squares model for predicting steady-state activation based on initial activation in steps 1-

17. We also used AdaGrad (Duchi et al., 2011) to search for hyperparameters, which resulted in 

setting the learning rate to 0.01. The network architecture was the same as in our main model with 

784-1000-10 neurons. Those results are consistent with other studies which showed that spiking 

networks can perform as well as non-spiking networks (i.e.: Zenke & Ganguli, 2018; Bellec et al. 

2020).  

 

https://github.com/ykubo82/bioCHL/tree/master/bioCHLspk
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Acoustic stimuli  

In animal experiments, as stimuli we used 1 s long pure tones (2, 3.3, 5.4, 8.9, 15 and 24 

kHz at 60dB), interleaved with 1s periods of silence, as described in (Luczak et al. 2009 & 2013). 

Activity occurring >200ms after stimulus offset and before the next stimulus onset was regarded 

as spontaneous. The stimuli were continuously presented for 20-108 min, depending on how long 

the animal appeared to be comfortable during the experiment. All stimuli were tapered at the 

beginning and end with a 5ms cosine window. Experiments took place in a single-walled sound 

isolation chamber (IAC, Bronx, NY) with sounds presented free field (RP2/ES1, Tucker-Davis, 

Alachua, FL). To compensate for the transfer function of the acoustic chamber, tone amplitudes 

were calibrated prior to the experiment using a condenser microphone placed next to the animal’s 

head (7017, ACO Pacific, Belmont CA) and a MA3 microphone amplifier (Tucker-Davis). 

 

Changes in neuronal activity across periods  

For each animal we divided the duration of recording into two halves. For each neuron we 

calculated the mean stimulus evoked firing rate in 30-40 ms time window, averaged over all 

stimulus presentations in each half of the experiment. Similarly, for each neuron we calculated the 

average predicted activity for the 30-40 ms time window, averaged across all stimuli in the 1st half 

of the experiment. We then calculated the difference between activities in the 2nd half minus the 

1st half, and we correlated it with the difference between activity in the 1st half minus predicted 

activity in the 1st half (Fig. 5b). As described in the Methods section, only neurons with average 

stimulus evoked firing rates higher than 3 SD above pre-stimulus baseline were used in our 

analyses. Dividing the data in different proportions e.g. 60%-40% gave the same conclusions.  

For comparison, analogous analyses were done on artificial neurons (Fig. 5a). For each 

neuron in the hidden layer the steady-state clamped activity was averaged over all 1200 stimulus 

presentations in a single learning epoch. Similarly, for each neuron in the hidden layer, the 

predicted activity was averaged across all stimuli presented in an epoch.  We then calculated the 

difference between clamped activities in 2 epoch: ∆𝐶𝑖 = <�̂�𝑖,𝑀> - <�̂�𝑖,𝑁> , where <> denotes 

average, i is index of neuron, and M and N are indexes of epochs with M > N. This was then 

correlated with difference between average clamped and predicted activity in epoch N: ∆𝑃𝑖 = 

<�̂�𝑖,𝑁> - <�̃�𝑖,𝑁>. We found that the correlation between ∆C and ∆P was strongest in the earliest 

epochs where the learning curve was most changing (Fig. 2e). For this simulation we used neural 

network as described in Methods with 784-1000-10 neurons, and we used the learning rule 

described in Eq. 3. However, in order to reproduce the repeated presentation of the same stimuli 

as in animal experiments, we used the same 1200 stimulus in each learning epoch. Presenting 

different stimuli at each epoch as in our original simulation, gave qualitatively similar results.   

Note that usually the activity of a neuron in the 1st half of recording is correlated with its 

activity in the 2nd half, which typically is a trivial experimental observation. However, it is 

nontrivial to correctly predict (only from activity in the 1st half) if that neuron activity will increase 

or if it will decrease in the 2nd half. This is exactly what we are presenting in Fig. 5b, that a change 

in average firing rate from the 1st to 2nd half can be correctly predicted based on our learning rule. 

To state it differently, the activity of a neuron in the 1st half (X1) is usually correlated with its 

activity in the 2nd half (X2), and this can be described as: X2 = X1+eps, where eps is a small 

positive or negative number representing change in activity from the 1st to the 2nd half. Thus, in 
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Fig. 5b, we are not showing that X1 is similar (correlated) to X2, but rather that eps correlates with 

‘surprise’: the difference between actual and predicted activity in the 1st half, which provides a 

novel insight about neuronal plasticity.      

 

Predicting evoked dynamics from spontaneous activity  

For predicting evoked dynamics from spontaneous, first we analyzed ‘types’ of 

spontaneous activity patterns. For this we divided spontaneous packets into 10 groups based on 

principal component analysis (PCA). Specifically, each packet was represented as a NxT matrix, 

where N is number of neurons and T=30 is number of 3ms long time bins. This matrix was then 

converted into a single vector V with length of NxT. This was repeated for each packet, thus we 

obtained a VxP matrix, where P is the number of spontaneous packets (P for each animal was: 293, 

855, 1215 and 2472). We then ran PCA on the VxP matrix and based on values of the 1st PC we 

divided packets into 10 groups. Note that the distribution of packets in PCA space was continuous, 

thus from this analysis it should not be interpreted that there are distinct types of packets. Dividing 

packets into 5-20 groups and including the 2nd and 3rd PC gave consistent results with those 

presented in the main text.   

For predicting evoked dynamics from spontaneous, we faced the problem that defining the 

onset of spontaneous packets is less accurate than the onset of evoked responses. Thus, to ensure 

a similar precision of alignment, during each stimulus presentation we detected the onset of evoked 

responses using the same criteria as for spontaneous packets. Then, the evoked responses were 

realigned according to that of the detected onset. This allowed for estimating the spontaneous and 

evoked activity with the same precision. Using the original onset times instead of the realigned 

gave qualitatively similar results.  
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Suppl. Fig. 5. Testing effect of different values of β1 and β2. In Eq. 6 we used: β1 = 2 and β2 = 2, 

which allowed to reduce that formula from exponential to linear. Here we illustrate that resulted 

linearized expression in form: (𝑥𝑖 − 𝑥𝑗) is a reasonable approximation of non-linear version: 

(𝑥𝑖
𝛽2−1 − 𝑥𝑗

𝛽1−1) for β1 and β2  in range observed experimentally: 1.7 < β1 < 4.8 and 1.7 < β2  < 

2.7 (Devor et al., 2003), and for typical values of x in range between 0-1. a, Relation between 

(𝑥𝑖 − 𝑥𝑗) and (𝑥𝑖
𝛽2−1 − 𝑥𝑗

𝛽1−1) for β1 = 2.1 and β2 = 2.2. Here we generated 1000 random values 

for 𝑥𝑖 and separately for 𝑥𝑗, uniformly distributed on interval 0-1. Distribution of points along 

diagonal shows close to linear relation between results of both formulas. Least square regression 

line is shown in yellow. Correlation coefficient between points obtained with linear and non-linear 

formula was R=0.9988. b, Similarly, we calculated correlation coefficients between both formulas 

for all combinations of β1 and β2 in range: 1.7 < β1 < 4.8 and 1.7 < β2  < 2.7, using step size of 0.1. 

The lowest correlation coefficient was R = 0.9335 for β1 = 4.7 and β2 = 2.7. c, The same plot as in 

panel a, but for the “worst case” scenario with β1 = 4.7 and β2 = 2.7. Note that even in this case, 

the relation between both formulas is close to linear.  

 

 

Maximizing future energy balance.  

Intuitively, it makes sense that planning, i.e. making educated predictions, can improve 

success of an organisms in accessing more energy resources. In this section we show that this holds 

true even for a single neuron, where maximizing future energy balance is best achieved by 

predicting future activity. For that, first we will write equation for energy balance for a neuron at 

time t+n, where t represents current time and n is a small time increment. Using the same logic 

and notation as in Eq. 4, energy balance of a neuron j at time t+n, can be expressed as a function 

of: cost of housekeeping processes ( ɛ ), cost of electrical activity (which for simplified linear 

neurons can be written as sum of its synaptic inputs: 𝑥𝑗,𝑡+𝑛 = ∑ 𝑤𝑖𝑗𝑥𝑖,𝑡+𝑛𝑖 ), and energy supply 

from local blood vessels controlled by combined local activity of neurons (∑ 𝑥𝑘,𝑡+𝑛)𝑘 :  

(Eq. S1): E j,t+n = − ɛ − 𝑏1(∑ 𝑤𝑖𝑗𝑥𝑖,𝑡+𝑛)𝛽1
𝑖   + 𝑏2(∑ 𝑥𝑘,𝑡+𝑛)𝛽2 𝑘   

where β1 and β2 describe a non-linear relation between activity and energy (Devor et al., 2003).  
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In the main text we show in simulations (Fig. 2) and in experimental data (Fig. 4), that for small 

n, activity of neuron j at time t+n could be approximated by a linear function of its activity at 

earlier time step t: 𝑥𝑗,𝑡+𝑛 =  𝜆𝑗𝑥𝑗,𝑡, where 𝜆 is a regression coefficient. Thus Eq. S1 can be rewritten 

as  

(Eq. S2): E j,t+n = − ɛ − 𝑏1(𝜆𝑗 ∑ 𝑤𝑖𝑗𝑥𝑖,𝑡)𝛽1
𝑖   + 𝑏2(∑ 𝑥𝑘,𝑡+𝑛 +  𝜆𝑗𝑥𝑗,𝑡)𝛽2 𝑘≠𝑗   

Using gradient ascent method, we can calculate change in weights to maximize future energy 

balance: 

(Eq. S3): ∆𝑤𝑖𝑗 = 
𝜕𝐸𝑗,𝑡+𝑛

𝜕𝑤𝑖𝑗
 = − 𝑥𝑖,𝑡𝜆𝑗𝛽1𝑏1(𝜆𝑗 ∑ 𝑤𝑖𝑗𝑥𝑖,𝑡)𝛽1−1

𝑖  + 

+ 𝑥𝑖𝜆𝑗𝛽2𝑏2(∑ 𝑥𝑘,𝑡+𝑛 + 𝜆𝑗 ∑ 𝑤𝑖𝑗𝑥𝑖,𝑡𝑖 )𝛽2−1 𝑘≠𝑗   

Note that in Eq. S3: 𝜆𝑗 ∑ 𝑤𝑖𝑗𝑥𝑖,𝑡 =  𝜆𝑗𝑥𝑗,𝑡 ≈ �̃�𝑗𝑖  , thus this term corresponds to predicted future 

activity: �̃�𝑗. We will also denote a population activity ∑ 𝑥𝑘,𝑡+𝑛 𝑘≠𝑗  as: 𝑥⏞ , which simplifies Eq. S3 

to: 

 (Eq. S4): ∆𝑤𝑖𝑗 =  − 𝑥𝑖,𝑡𝜆𝑗𝛽1𝑏1�̃�𝑗
𝛽1−1 + 𝑥𝑖𝜆𝑗𝛽2𝑏2( 𝑥⏞ + �̃�𝑗)𝛽2−1 

after factoring out 𝑥𝑖,𝑡𝜆𝑗 and switching order of terms, we get:  

(Eq. S5): ∆𝑤𝑖𝑗 = 𝑥𝑖,𝑡𝜆𝑗( 𝛽2𝑏2( 𝑥⏞ + �̃�𝑗)
𝛽2−1

−   𝛽1𝑏1�̃�𝑗
𝛽1−1) 

Considering results from Suppl. Fig. 5, we can use β1 = 2 and β2 = 2, which allows to simplify and 

reorganize terms as follows: 

(Eq. S6): ∆𝑤𝑖𝑗 = 𝑥𝑖,𝑡𝜆𝑗( 2𝑏2( 𝑥⏞ + �̃�𝑗) −   2𝑏1�̃�𝑗  ) = 𝑥𝑖,𝑡2𝜆𝑗( 𝑏2 𝑥⏞ +  𝑏2�̃�𝑗 − 𝑏1�̃�𝑗) 

= 𝑥𝑖,𝑡2𝜆𝑗( 𝑏2 𝑥⏞ − �̃�𝑗( 𝑏1 − 𝑏2)) = 𝑥𝑖,𝑡2𝜆𝑗( 𝑏1 − 𝑏2)( 
𝑏2

( 𝑏1−𝑏2)
𝑥⏞ − �̃�𝑗) 

after denoting constant terms as 𝛼3 =  2𝜆𝑗( 𝑏1 − 𝑏2), and as 𝛼4 =  
𝑏2

( 𝑏1−𝑏2)
 , we obtain:  

(Eq. S7): ∆𝑤𝑖𝑗 =  𝛼3 𝑥𝑖,𝑡 (𝛼4 𝑥⏞ − �̃�𝑗) 

This shows that maximizing future energy balance requires neuron to predict its future activity: �̃�𝑗. 

Also note that in the brain, networks are highly recurrent, thus population activity 𝑥⏞ can be seen 

as providing similar role as top-down modulation: �̂�𝑖. Altogether, this suggests, that type of a 

learning rule as in Eq. 3: ∆𝑤𝑖𝑗 = 𝛼�̂�𝑖(�̂�𝑗 − �̃�𝑗), may be a necessity to allow neuron for its highly 

energy intensive operation.    

Note also that this derivation of learning rule from metabolic principles is obtained simply by only 

considering input and output energy to the cell, without need for including specific metabolic 

interactions. This provides an important theoretical contribution by showing how complex 

relations between cell metabolism and plasticity could be described more simply.  
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Activation function  

To simplify presented derivation of learning rule we used linear model of a neuron. However, we 

can obtain the same expression even if we use non-linear neuronal model with activation function 

like ReLU: f(x) = x+ = max( 0 , x ) (Glorot et al. 2011). This is because for x > 0: ReLU( x ) = x, 

which results in the same formulas as presented in our derivation. The only difference is that if we 

use ReLU then we need to write a separate expression for x < 0, to specify that in such case ReLU( 

x ) = 0. For sigmoid activation function, showing equivalence of the formulas could be more 

complicated. However, there are multiple arguments that ReLU could be a better model of 

biological neurons than logistic sigmoid neurons (Glorot et al. 2011), and our neural network 

simulations performed similarly for both neuron models.   

 

Biological plausibility of predictive mechanism implementation within a neuron.   

In this study, we propose that each neuron implements a linear predictive model, which can be 

written in general form as: �̃�(t) = λ(1)* x(t-1),+…+ λ(n)* x(t-n) + constant, where x(t-n) is past activity 

at time step t-n, n is a maximum number of time steps contributing to the prediction, and λ(n) is a 

coefficient describing how past activity at time step t-n contributes to predicted activity at time t. 

This may appear to be a challenging computation for a cell, considering that it requires storing 

values of many λ coefficients and to multiply past activity by a specific λ at each time step. Here 

we explain how this equation could be implemented by known intracellular processes, like 

regulation of ion concentration. 

In neurons, an action potential generates a temporal increase in calcium concentration. This 

variation in calcium can be approximated by convolution of the action potential with the waveform 

of the unitary calcium transient (Yaksi et al. 2006). Note that convolution is a linear operation and 

can be mathematically expressed similarly to our predictive model. Thus, calcium concentration 

at time t can be described as: y(t) = λ(1)* x(t-1),+…+ λ(n)* x(t-n) , where coefficients λ correspond to 

values of unitary calcium transient at time steps 1 ... n, and x is the past activity. For instance, if 

λ(1) has the highest value, then the above equation means that neuron activity at time t-1 is the 

biggest predictor of calcium concentration at time t. Consequently, decay of λ values for larger n, 

tells us how quickly calcium ions are cleaned from the cell at those time steps after the action 

potential. Therefore, values of λ are directly related to the physical properties of calcium channels, 

such as number of channels and ion transport efficiency, among other factors. This illustrates that 

our equation for the predictive model could be implemented within each neuron, simply as a 

physical process of activity-dependent changes in ions concentration.  

Our model proposes that, when a neuron receives e.g. larger than predicted top-down modulation, 

then not only will synapses be modified as described in Eq. 3, but also predictive model parameters 

λ will be updated to reduce prediction error. As explained above, this could be accomplished by 

e.g. changing the efficiency or number of ion channels, which would modify the calcium dynamics 

used for predictions. Although this is only a conjecture, this offers an experimentally testable 

hypothesis, that the waveform of the unitary calcium transient should change, depending on the 

frequency at which a neuron was stimulated earlier.  
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